Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection
نویسندگان
چکیده
Paraphrase detection is the task of examining two sentences and determining whether they have the same meaning. In order to obtain high accuracy on this task, thorough syntactic and semantic analysis of the two statements is needed. We introduce a method for paraphrase detection based on recursive autoencoders (RAE). Our unsupervised RAEs are based on a novel unfolding objective and learn feature vectors for phrases in syntactic trees. These features are used to measure the wordand phrase-wise similarity between two sentences. Since sentences may be of arbitrary length, the resulting matrix of similarity measures is of variable size. We introduce a novel dynamic pooling layer which computes a fixed-sized representation from the variable-sized matrices. The pooled representation is then used as input to a classifier. Our method outperforms other state-of-the-art approaches on the challenging MSRP paraphrase corpus.
منابع مشابه
AMRITA_CEN$@$SemEval-2015: Paraphrase Detection for Twitter using Unsupervised Feature Learning with Recursive Autoencoders
We explore using recursive autoencoders for SemEval 2015 Task 1: Paraphrase and Semantic Similarity in Twitter. Our paraphrase detection system makes use of phrase-structure parse tree embeddings that are then provided as input to a conventional supervised classification model. We achieve an F1 score of 0.45 on paraphrase identification and a Pearson correlation of 0.303 on computing semantic s...
متن کاملSentence Alignment using Unfolding Recursive Autoencoders
In this paper, we propose a novel two step algorithm for sentence alignment in monolingual corpora using Unfolding Recursive Autoencoders. First, we use unfolding recursive auto-encoders (RAE) to learn feature vectors for phrases in syntactical tree of the sentence. To compare two sentences we use a similarity matrix which has dimensions proportional to the size of the two sentences. Since the ...
متن کاملRobust Example-based Dialog Retrieval using Distributed Word Representations and Recursive Autoencoders
Based on our previous work on example-based chat-oriented dialog systems that utilize a human-to-human conversation. Though promising, our previous simple retrieval techniques resulting a weakness on handling an out of vocabulary (OOV) database queries. In this paper we discuss an approach to increase the robustness of example-based dialog response retrieval. We employ a recursive neural networ...
متن کاملParaphrase Detection Using Recursive Autoencoder
In this paper, we tackle the paraphrase detection task. We present a novel recursive autoencoder architecture that learns representations of phrases in an unsupervised way. Using these representations, we are able to extract features for classification algorithms that allow us to outperform many results from previous works.
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کامل